

franquemont 8a 2350 saignelégier Tel: 032/544 73 19 nat: 079/395 24 55 marc.donze@dnm-ing.ch www.dnm-ing.ch

Calcul de la valeur Uw et isothermes selon les normes EN ISO 10077-1, 10077-2 et SIA 331

Ouvrage/référence	VITROCSA V56
Commune du projet	-
N° de parcelles/adresse	-
Sujet du document	Calcul de la valeur Uw et des isothermes du système VITROCSA V56 selon les normes EN ISO 10077-1 et 10077-2, ainsi que la SIA 331. Dimensions extérieures de l'élément 4050 x 2030 mm. Système Vitrocsa V56, avec rupture thermique dans le cadre, épaisseur des verres 56 mm.
Date	25.09.2017
Mandant	Orchidées Constructions SA Madame Baumgartner Rue de la Gare 8 CH-2024 St-Aubin-Sauges
N° du mandat	2017_03_Vitrocsa_Mandats_40
N° de rapport	2017_03_40_01
Adresse du bureau technique	dnm ingénieur-conseil Sàrl Franquemont 8A 2350 Saignelégier
Auteur	Flavien Sauser

Table des matières

1	RESU	ME DES RE	ESULIAIS	4
	1.1	Elémen	nt de calcul	
	1.2	Résulta	ats	4
	1.3	Calcul o	des isothermes	5
2	BASE	S DE CALCU	UL	5
3	Овје	т 5		
4	CALC	UL NUMÉR	RIQUE	6
	4.1	Calcul o	de la valeur Uf	6
	4.2	Valeur	Ug du verre isolant	6
	4.3	Valeur	ψ_{g} de l'intercalaire	6
	4.4	Calcul o	des isothermes	6
5	Systi	ÈME DE FEI	nêtre	7
6	Résu	LTATS DES	S CALCULS	8
	6.1	Valeur	U _f du cadre	
	6.2	Valeur	U_g et valeur Ψ_g du verre	9
	6.4	Valeur	Uw de la fenêtre selon EN ISO 10077-1	10
	6.5	Valeur	Uw de la fenêtre selon SIA 331	11
	6.6 Isothermes		12	
		6.6.1	Détail côté fixe (0°C)	12
		6.6.2	Détail côté coulissant (0°C)	12
		6.6.3	Détrail partie centrale (0°C)	13
		6.6.4	Détail haut fixe (0°C)	13
		6.6.5	Détail haut coulissant (0°C)	14
		6.6.6	Détail bas fixe (0°C)	15
		6.6.7	Détail bas coulissant (0°C)	16
		6.6.8	Détail côté fixe (-10°C)	16
		6.6.9	Détail côté coulissant (-10°C)	17
		6.6.10	Détrail partie centrale (-10°C)	17
		6.6.11	Détail haut fixe (-10°C)	18
		6.6.12	Détail haut coulissant (-10°C)	19
		6.6.13	Détail bas fixe (-10°C)	20
		6.6.14	Détail bas coulissant (-10°C)	21

ANNEXE A:	DESSINS ET COUPES (SELON INDICATIONS DU MANDATAIRE)	22
A.1	Détail côté fixe	22
A.2	Détail côté coulissant	23
A.3	Détail haut fixe	24
A.4	Détail haut coulissant	25
A.5	Détail bas fixe	26
A.6	Détail bas coulissant	27
A.1	Détail partie centrale	28
ANNEXE B:	CALCUL DES VALEURS U _F DU CADRE	29
B.1	Détail côté fixe	29
B.2	Détail côté coulissant	30
B.3	Détail haut fixe	31
B.4	Détail haut coulissant	32
B.5	Détail bas fixe	33
B.6	Détail bas coulissant	34
B.7	Détail partie centrale	35
ANNEXE C:	Calcul des valeurs Ψ_{G}	36
C.1	Détail côté fixe	36
C.2	Détail côté coulissant	37
C.3	Détail haut fixe	38
C.4	Détail haut coulissant	39
C.5	Détail bas fixe	40
C.6	Détail bas coulissant	41
C.7	Détail partie centrale	42
ANNEXE D:	CALCUL DES ISOTHERMES	43
D.1	Détail côté fixe	
D.2	Détail côté coulissant	44
D.3	Détail haut fixe	45
D.4	Détail haut coulissant	46
D.5	Détail bas fixe	47
D.6	Détail bas coulissant	48
D.7	Détail partie centrale	49

1 RÉSUMÉ DES RÉSULTATS

1.1 Elément de calcul

Menuiserie: Aluminium; profiles VITROCSA V56 56 mm Verre isolant: Verre double ép. 56 mm, Ug = $0.6 \text{ W/(m}^2\text{K})$

Gaz de remplissage du verre: Argon
Intercalaire: TGI Spacer

Dimensions extérieures de la menuiserie: 4050 mm x 2030 mm

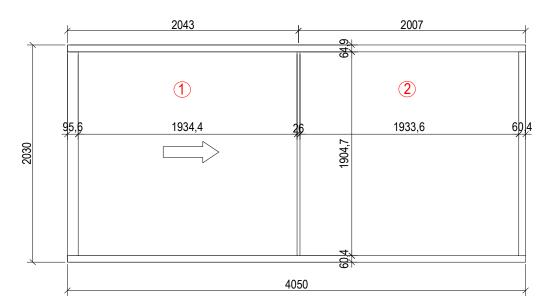


Figure 1: vue en élévation de la fenêtre

1.2 Résultats

Normes d'essais :	SIA 331		
$U_g = 0.6 \text{ W/(m}^2\text{K)}$	$A_{gf} = 7.367 \text{ m}^2$	Verre isolant	10-12-12-12-10
ψ_g = 0.055 W/(mK)	I _g = 15.355 m	Intercalaire	TGI – Spacer
$U_f = 3.102 \text{ W/(m}^2\text{K)}$	$A_f = 0.162 \text{ m}^2$	Cadre	V56 44mm
Part de vitrage	97.8%		

La valeur déclarée U_w selon SIA 331= 0.8 W/(m²K)

Normes d'essais : SN EN ISO 10077-1, SN EN ISO 10077-2

Part de vitrage 89.6%

La valeur déclarée Uw selon EN ISO 10077-1= 1.0 W/(m2K)

1.3 Calcul des isothermes

Les calculs des isothermes sont réalisés avec une température intérieure de 20°C et une température extérieure de 0°C et -10°C. Les facteurs de température superficielle des 7 différents détails sont les suivants :

•	Détail côté fixe	$t_{Rsi} = 0.751$
•	Détail côté coulissant	$f_{Rsi} = 0.757$
•	Détail haut fixe	$f_{Rsi} = 0.743$
•	Détail haut coulissant	$f_{Rsi} = 0.782$
•	Détail bas fixe	$f_{Rsi} = 0.486$
•	Détail bas coulissant	$f_{Rsi} = 0.474$
•	Détail partie centrale	$f_{Rsi} = 0.522$

2 BASES DE CALCUL

EN ISO 10077-1 (05/2010)	Calcul du coefficient de transmission thermique – Partie 1: méthode simplifiée.
EN ISO 10077-2 (06/2012)	Calcul du coefficient de transmission thermique – Partie 2: méthode numérique pour les profilés de menuiserie.
SN EN 12524 (11/2000)	Matériaux et produits pour le bâtiment – Propriétés hygrothermiques – Valeurs utiles tabulées.
SIA 331 (2012) :	Fenêtres et portes fenêtres.

3 OBJET

La valeur Uw est calculée sur la base d'une fenêtre dont les dimensions extérieures du cadre sont de 4050 mm (largeur) x 2030 mm. L'annexe A présente les coupes (côté/haut, partie centrale et bas) de la fenêtre. Le tableau ci-dessous indique les divers composants de l'élément de calcul.

Cadre		
Matériaux du cadre :	 Alliage d'aluminium 6060 de l'entreprise Alcan Barrette de rupture thermique en polyamide avec 25% (+/-3%) de fibres de verre courte (longueur max. 1mm) Joint de rupture thermique en EPDM 	
Profil :	Hauteur : 58 mm Largeur : 172 mm	
Etanchéité	2 joints à brosse dans les montants et traverses du cadre dans les par- ties coulissantes et fixes	
Elément coulissant et fixe		
Matériaux du cadre :	 Alliage d'aluminium 6060 de l'entreprise Alcan Barrette de rupture thermique en polyamide avec 25% (+/-3%) de fibres de verre courte (longueur max. 1mm) Joint de rupture thermique en EPDM dans la partie centrale et le profil de poignée Tour de verre en matériau synthétique renforcé au fibres de verre type GFK 	

Profil:	En forme de U (67/20/3) sans rupture au niveau du raccord entre les deux vitrages. En forme de U (67/30/3) avec rupture thermique.
Etanchéité	2 joints à brosse dans le profil raccord entre les deux vitrages
Vitrage	
Valeur Ug:	0.6 W/m ² K)
Valeur Ψ_{g} :	Selon calcul flixo
Construction du verre isolant :	10-12-12-10 (mm)
Gaz de remplissage :	Argon
Intercalaire :	TGI – Spacer (Technoform Glass Insulation GmbH)
Etanchéité du verre	
Etanchéité intérieure :	Silicone
Etanchéité extérieure :	Silicone

4 CALCUL NUMÉRIQUE

Le flux de chaleur (Φ) est calculé avec le programme flixo 8 de l'entreprise Infomind GmbH à Zurich. Les valeurs caractéristiques des matériaux (valeur lambda) proviennent des normes EN ISO 10077-2 et EN ISO 12524. La matérialisation des différentes surfaces des modèles est présentée en annexe.

4.1 Calcul de la valeur Uf

Lors du calcul de la valeur U_f, le verre isolant est remplacé par un panneau fictif (glaspanel) qui possède une valeur lambda de 0.035 W/(mK). Les conditions limites proposées par la norme EN ISO 10077-2 sont les suivantes.

Désignation	Température θ [°C]	Résistance thermique superficielle Rs [m²K/W]
Standard extérieur	-10	0.04
Standard intérieur	20	0.13
Angle	20	0.20

Tableau 1: conditions limites pour le calcul des valeurs U du cadre

4.2 Valeur Ug du verre isolant

La valeur Ug du verre isolant est définie à 0.6 W/(m²K).

4.3 Valeur ψ_g de l'intercalaire

La valeur ψ_g de l'intercalaire est déterminée en fonction des fiches techniques « Warm Edge » BF, respectivement du modèle « two box ».

4.4 Calcul des isothermes

Le verre isolant ainsi que la construction du mur sont considérés dans les calculs d'isothermes. Les détails de construction correspondent à des cas conventionnels. Le tableau suivant présente les conditions de bord appliquées dans les calculs.

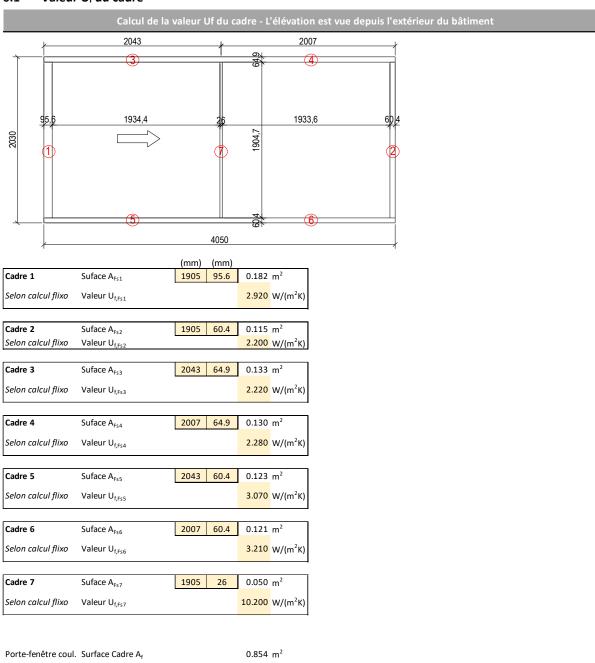
Désignation	Température θ [°C]	Coefficient de transfert de chaleur surfa- cique h [W/m²K]
Standard extérieur	0/-10	25
Standard intérieur	20	7.692
Angle	20	5

Tableau 2: conditions limites pour le calcul des valeurs U du cadre

Le facteur de température superficielle se calcule à l'aide de la fomrul suivante :

$$f_{Rsi} = \frac{\theta_{si} - \theta_e}{\theta_i - \theta_e} [-]$$

 $\begin{array}{ll} \theta_{si}: & \text{temp\'erature de la surface int\'erieure} & [^{\circ}C] \\ \theta_{i}: & \text{temp\'erature de l'air int\'erieur} & [^{\circ}C] \\ \theta_{e}: & \text{temp\'erature de l'air ext\'erieure} & [^{\circ}C] \end{array}$


5 SYSTÈME DE FENÊTRE

Ce document ne présente pas les détails du système de fenêtre. Pour un contrôle éventuel des calculs des valeurs Uf, veuillez vous procurer les dessins en format électronique auprès du bureau dnm ingénieur-conseil Sàrl.

6 RÉSULTATS DES CALCULS

Valeur U_f moyenne

6.1 Valeur Uf du cadre

3.102 W/(m²K)

6.2 Valeur U_g et valeur Ψ_g du verre

Description			Selon EN 673	
Verre	Туре	Construction [mm]	Gaz	Valeur U _g [W/m²K]
	Verre isolant triple	10-12-12-12-10	Argon	0.6

Valeur Ψg de l'intercalaire selon EN ISO 10077-2

La valeur Ψg du verre est calculée selon la norme ISO 10077-2

$$\Psi_g = \frac{\Psi_s * G_h + \Psi_{Mp} * G_h + \Psi_o * G_b + \Psi_u * G_b}{l_g} [W/mK]$$

Partie fixe : calcul de la valeur Ψ_{gF} du verre isolant

G _{Fb}	Largeur visible du verre	1.905 m
G _{Fh}	Longeur visible du verre	1.934 m
I _{gF}	Longueur de l'intercalaire	7.677 m

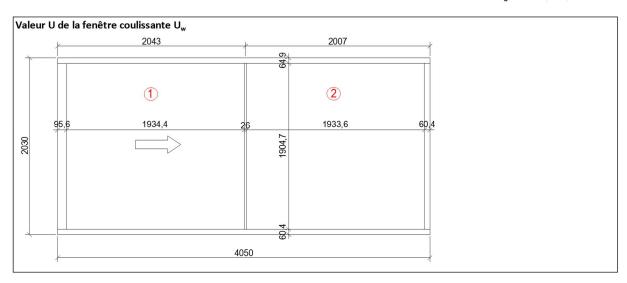
Ψ_{Fs}	Valeur Psi côté <i>selon calcul Flixo</i>	0.051	W/mK
Ψ_{mp}	Valeur Psi partie centrale selon calcul Flixo	0.071	W/mK
Ψ_{fo}	Valeur Psi haut selon calcul Flixo	0.049	W/mK
Ψ_{fu}	Valeur Psi bas selon calcul Flixo	0.052	W/mK

Valeur $\Psi_{\sf gF}$ moyenne de l'intercalaire	0.056	W/mK	
--	-------	------	--

Partie coulissante : calcul de la valeur Ψ_{gF} du verre isolant

G _{Fb}	Largeur visible du verre	1.905	m
G_Fh	Longeur visible du verre	1.934	m
I _{gF}	Longueur de l'intercalaire	7.678	m

Ψ_{Fs}	Valeur Psi côté <i>selon calcul Flixo</i>	0.047	W/mK
Ψ_{mp}	Valeur Psi partie centrale selon calcul Flixo	0.071	W/mK
Ψ_{fo}	Valeur Psi haut <i>selon calcul Flixo</i>	0.051	W/mK
Ψ_{fu}	Valeur Psi bas selon calcul Flixo	0.052	W/mK


Valeur Ψ_{gF} moyenne de l'intercalaire	0.055	W/mK
--	-------	------

6.4 Valeur Uw de la fenêtre selon EN ISO 10077-1

Type de fenêtre Désignation commerciale

Porte fenêtre coulissante

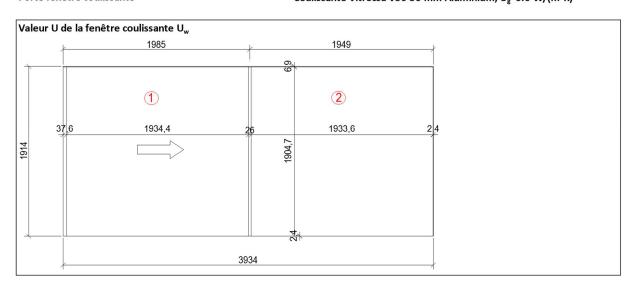
Coulissante Vitrocsa V56 56 mm Aluminium, U_g =0.6 W/(m^2 K)

Verre partie 1	Suf. Verre A _{gF1}	3.684 m ²
	Permiètre de l'inter. I _{gF1}	7.678 m
	Valeur $\Psi_{\sf gF}$ de l'inter.	0.055 W/(mK)

Verre partie 2	Suf. Verre A _{gF2}	3.683 m^2
	Permiètre de l'inter. I _{gF2}	7.677 m
	Valeur $\Psi_{\scriptscriptstyle gF}$ de l'inter.	0.056 W/(mK)

Verre total	Suf. Verre A _{gF}	7.367 m ²
	$Valeur U_g du verre$	0.600 W/(m ² K)
	Permiètre de l'inter. I _{gF}	15.355 m
	Valeur $\Psi_{\sf gF}$ de l'inter.	0.055 W/(mK)

Cadre	Surf. Cadre A _{f, lumière}	0.854 m ²
	Valeur U _f moy. du cadre	3.102 W/(m ² K)


Calcul de la valeur
$$\mathbf{U}_{w}$$
 [$W/(m^2 K)$]
$$U_{w} = \frac{U_f * A_{f,lumi\`ere} + U_g * A_{gF} + \varPsi_{gF} * I_{gF}}{A_{w}}$$

Part de vitrage	(A _{gF} +A _{gS})/A _w *100	89.6 %
i air ac viciage	(, ,gr ., ,gs), , ,w ±00	03.0 /0

Porte-fenêtre coul.	Surface A _w	8.22 m ²
	$Valeur\;U_w$	0.963 W/(m ² K)
	Valeur U _w déclarée	1 W/(m ² K)

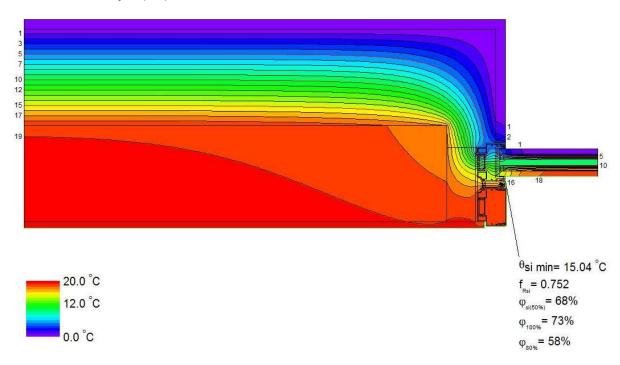
6.5 Valeur Uw de la fenêtre selon SIA 331

Type de fenêtre Porte fenêtre coulissante Désignation commerciale Coulissante Vitrocsa V56 56 mm Aluminium, Ug=0.6 W/(m²K)

Verre partie 1	Suf. Verre A _{gF1}	3.684 m ²
	Permiètre de l'inter. I _{gF1}	7.678 m
	Valeur $\Psi_{\sf gF}$ de l'inter.	0.055 W/(mK)

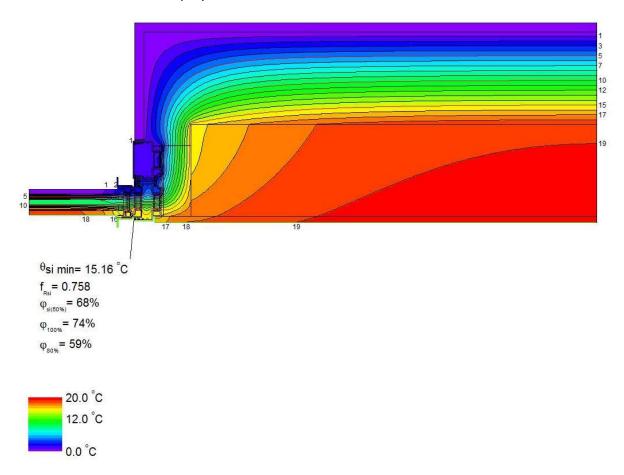
Verre partie 2	Suf. Verre A _{gF2}	3.683 m^2
	Permiètre de l'inter. I _{gF2}	7.677 m
	Valeur $\Psi_{\sf gF}$ de l'inter.	0.056 W/(mK)

Verre total	Suf. Verre A _{gF}	7.367 m ²
	$Valeur U_g du verre$	0.600 W/(m ² K)
	Permiètre de l'inter. I _{gF}	15.355 m
	Valeur $\Psi_{\sf gF}$ de l'inter.	0.055 W/(mK)

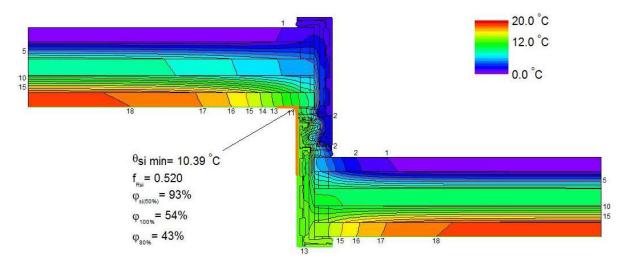

Calcul de la valeur
$$\mathbf{U_w}\left[W/(m^2\ \mathrm{K})\right]$$

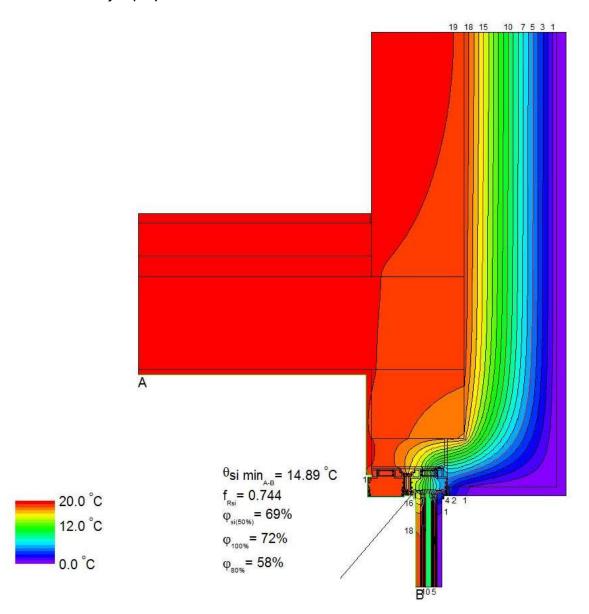
$$U_w = \frac{U_f*A_{f,lumi\`ere} + U_g*A_{gF} + \varPsi_{gF}*I_{gF}}{A_w}$$

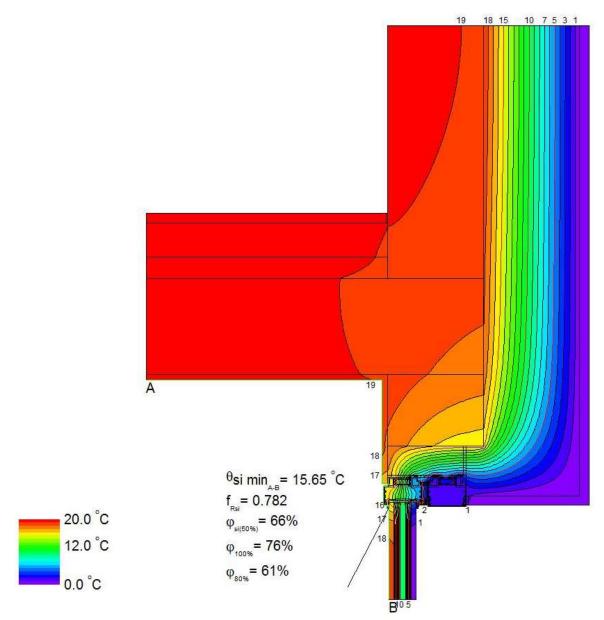
Part de vitrage	$(A_{gF} + A_{gS})/A_{w} * 100$	97.8 %

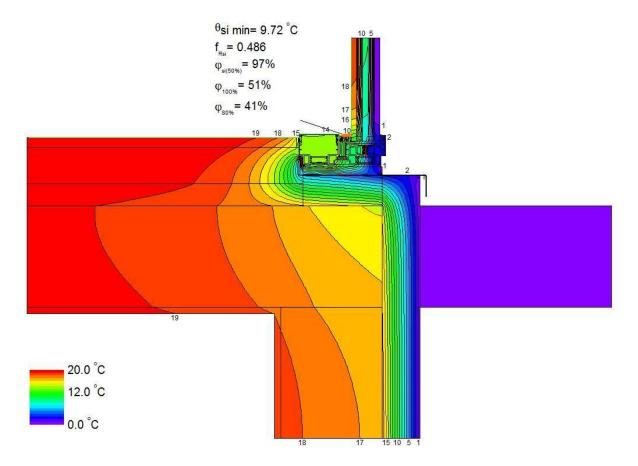

Porte-fenêtre coul.	Surface A _w	7.53 m ²
	$Valeur\;U_w$	0.767 W/(m ² K)
	Valeur U _w déclarée	0.8 W/(m ² K)

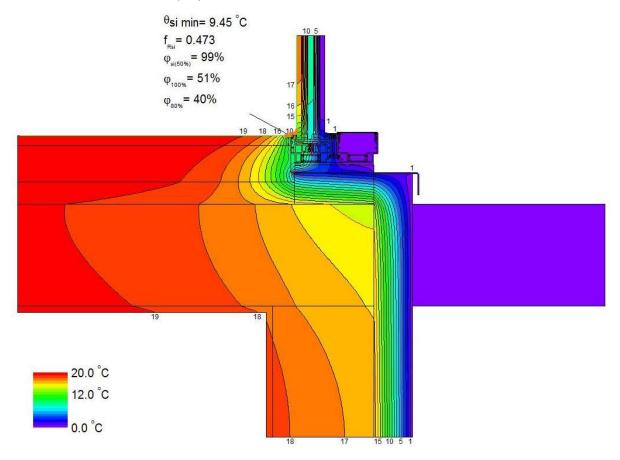
6.6 Isothermes

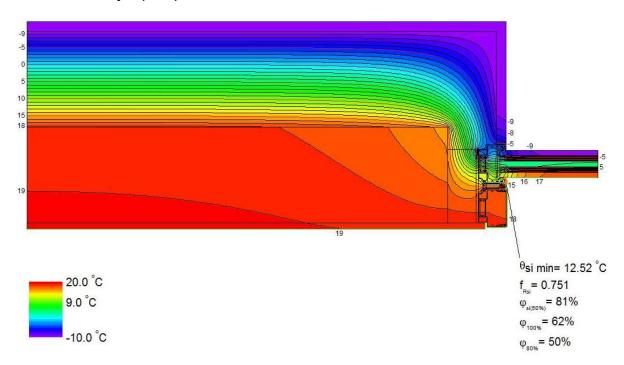

6.6.1 Détail côté fixe (0°C)

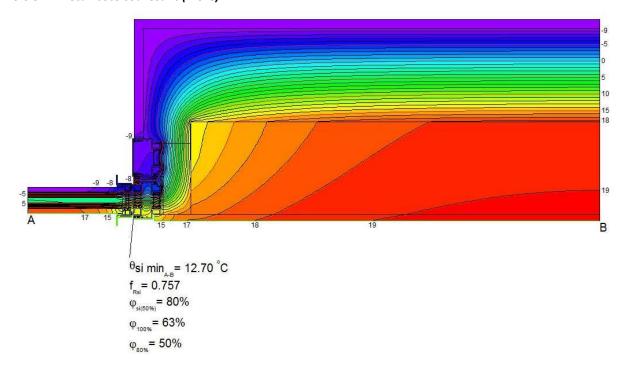

6.6.2 Détail côté coulissant (0°C)


6.6.3 Détrail partie centrale (0°C)

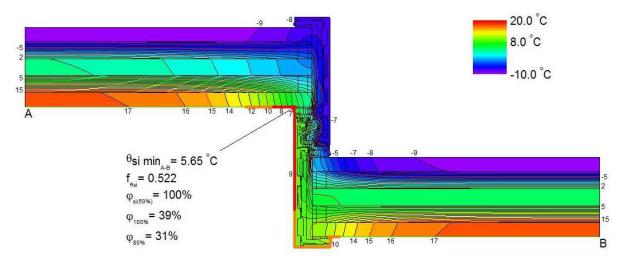

6.6.4 Détail haut fixe (0°C)


6.6.5 Détail haut coulissant (0°C)

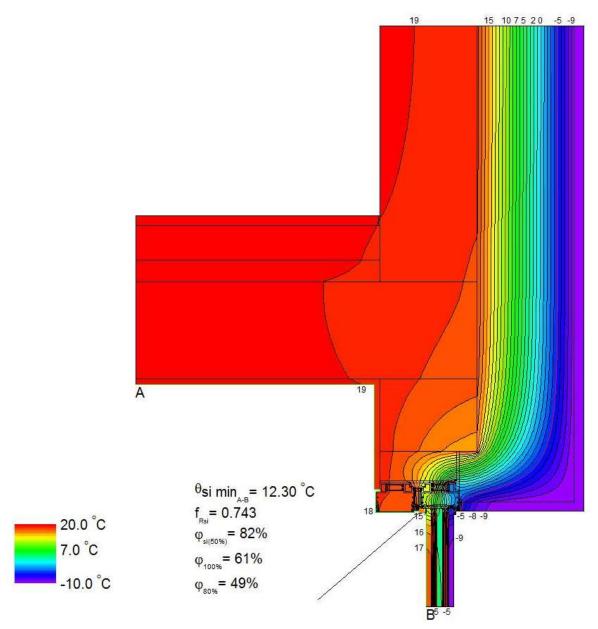

6.6.6 Détail bas fixe (0°C)


6.6.7 Détail bas coulissant (0°C)

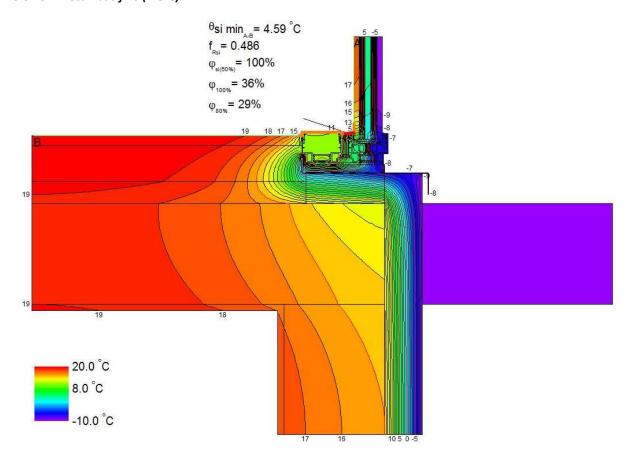
6.6.8 Détail côté fixe (-10°C)

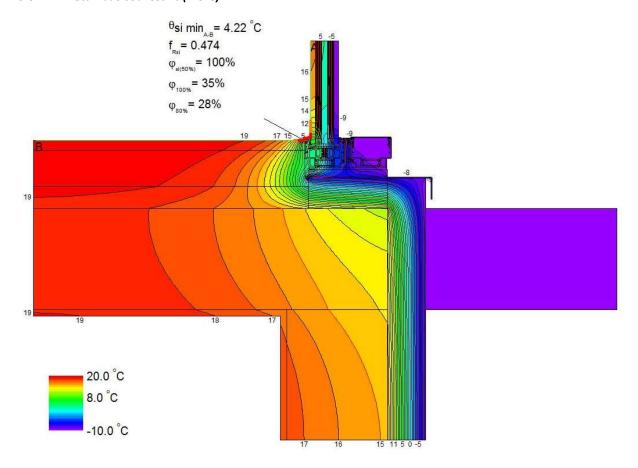


6.6.9 Détail côté coulissant (-10°C)

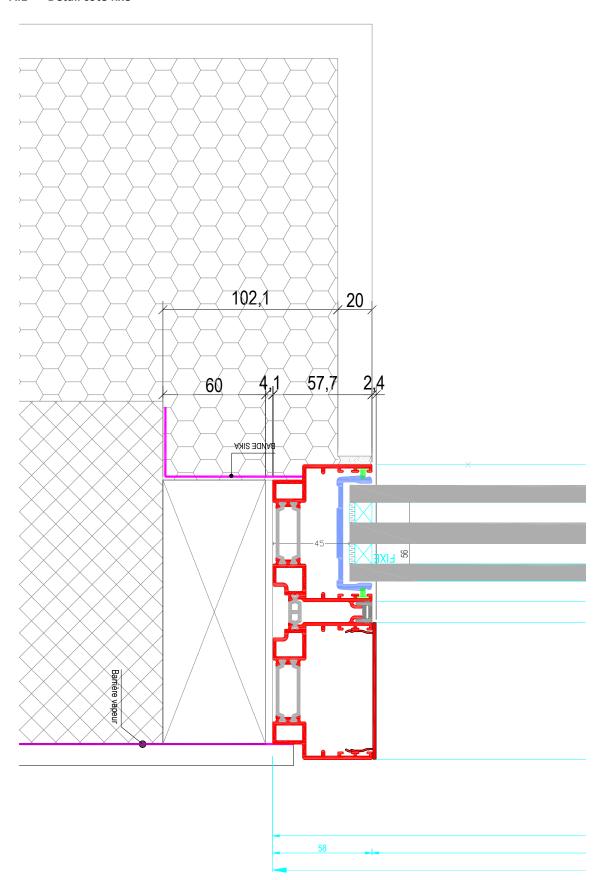


6.6.10 Détrail partie centrale (-10°C)

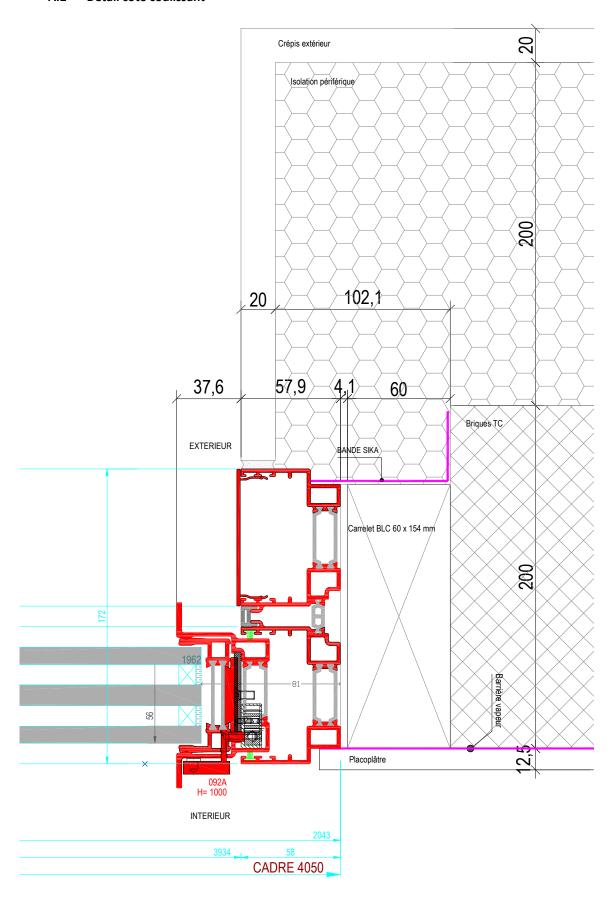

6.6.11 Détail haut fixe (-10°C)


6.6.12 Détail haut coulissant (-10°C)

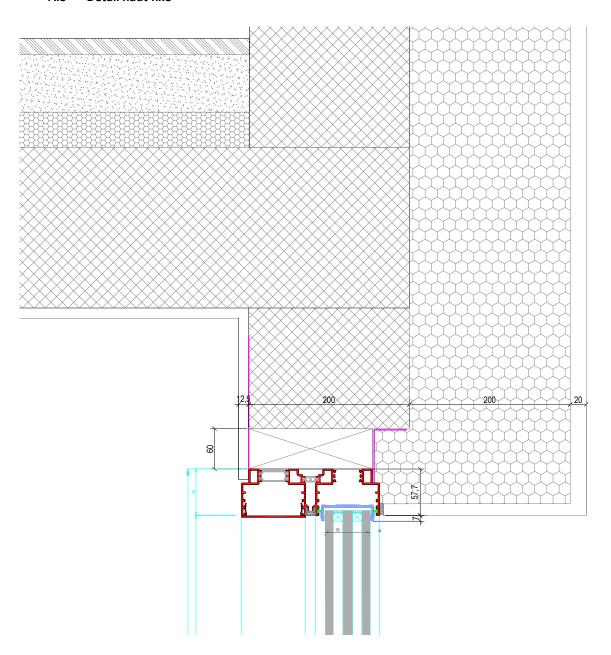
6.6.13 Détail bas fixe (-10°C)

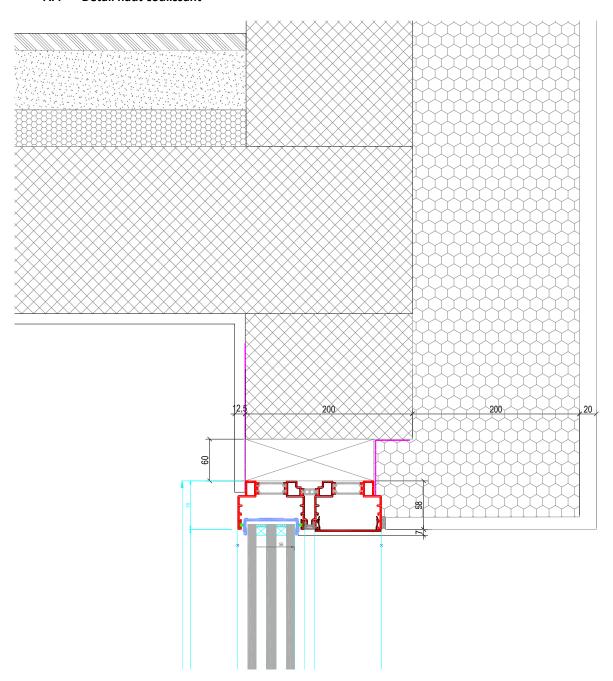


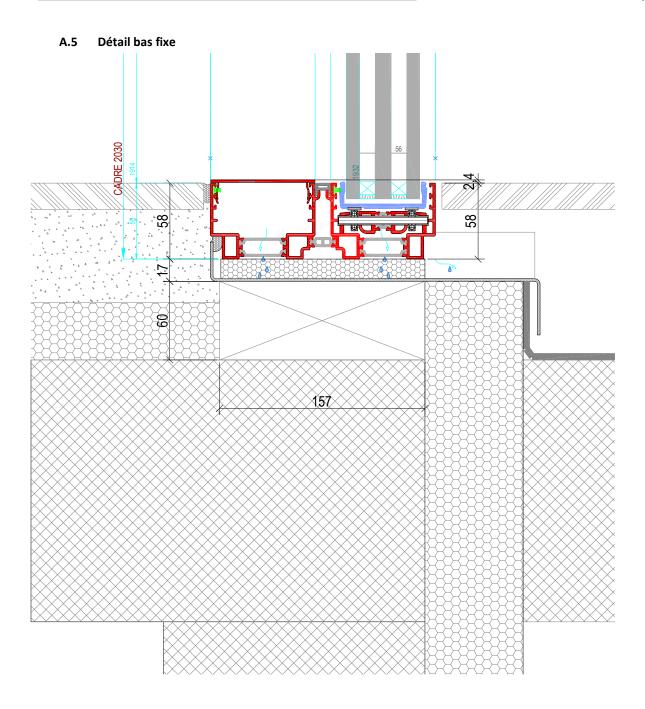
6.6.14 Détail bas coulissant (-10°C)

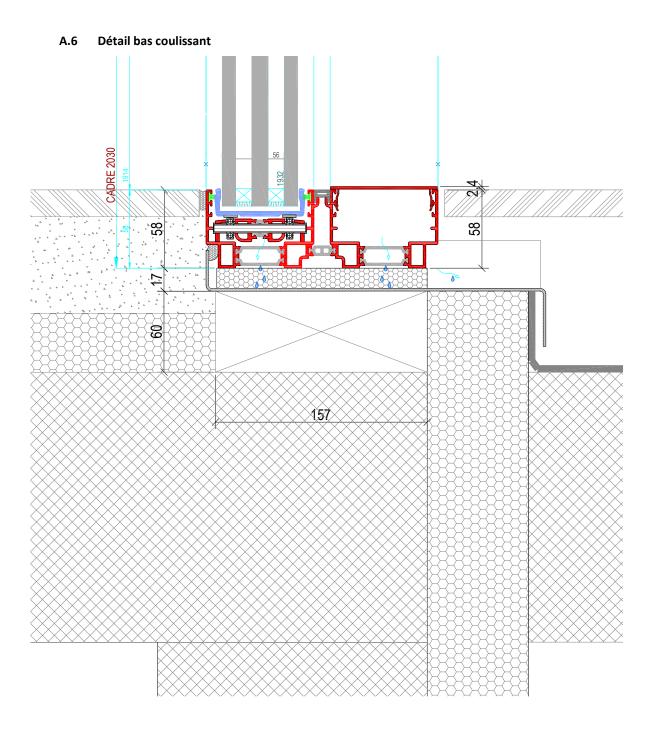


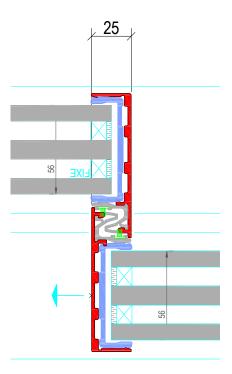
Annexe A: Dessins et coupes (selon indications du mandataire)

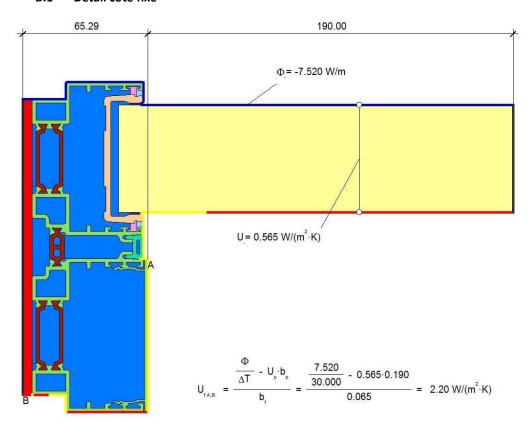

A.1 Détail côté fixe


A.2 Détail côté coulissant

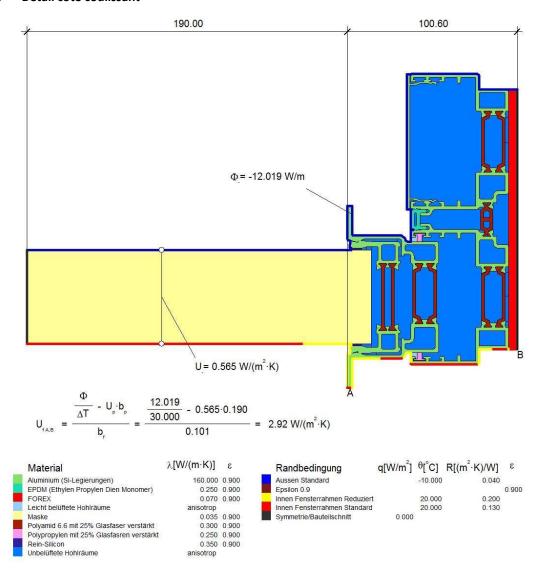



A.3 Détail haut fixe

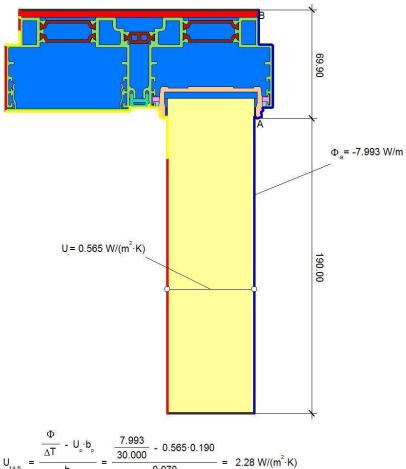

A.4 Détail haut coulissant



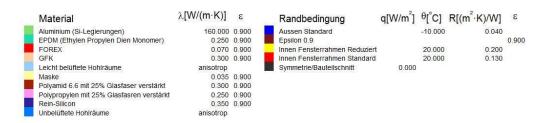
A.1 Détail partie centrale

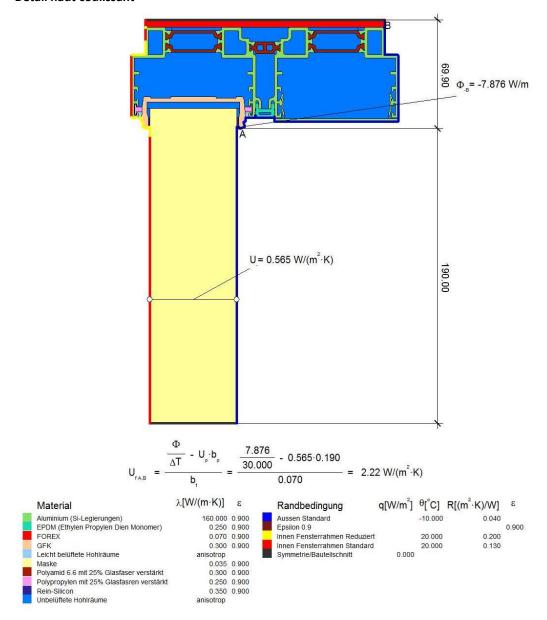

Annexe B: Calcul des valeurs U_F du cadre

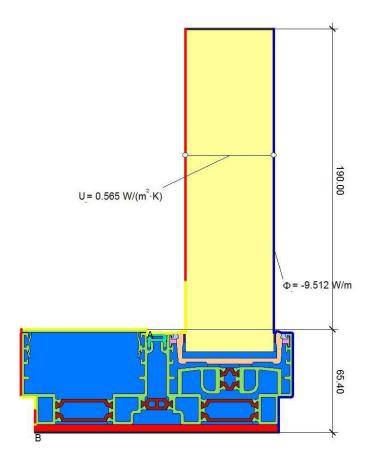
B.1 Détail côté fixe

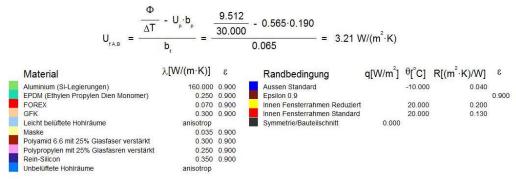


Material	$\lambda[W/(m\cdot K)]$	3	Randbedingung	$q[W/m^2]$	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aluminium (Si-Legierungen)	160.000	0.900	Aussen Standard		-10.000	0.040	
EPDM (Ethylen Propylen Dien Monomer)	0.250	0.900	Epsilon 0.9				0.9
FOREX	0.070	0.900	Innen Fensterrahmen Reduziert		20.000	0.200	
GFK	0.300	0.900	Innen Fensterrahmen Standard		20.000	0.130	
Leicht belüftete Hohlräume	anisotrop		Symmetrie/Bauteilschnitt	0.000			
Maske	0.035	0.900					
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900					
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900					
Rein-Silicon	0.350	0.900					
Unbelüftete Hohlräume	anisotrop						

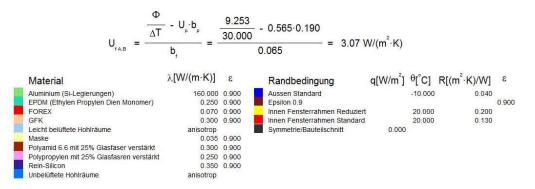

B.2 Détail côté coulissant

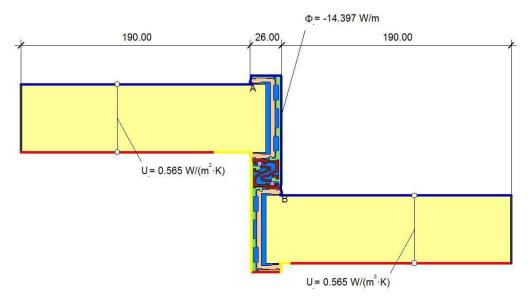

Détail haut fixe **B.3**

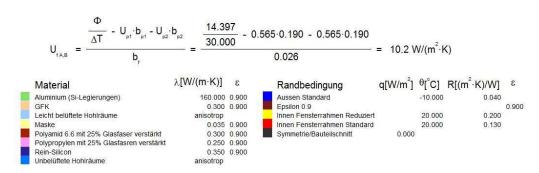

5000		$\frac{\Phi}{\Delta T}$ - $U_p \cdot b_p$	$\frac{\Phi}{\Delta T}$ - $U_p \cdot b_p$	7.993	- 0.565·0.190		2
U _{f A,B}	=b,		=	10	0.070	=	2.28 W/(m ² ·K)

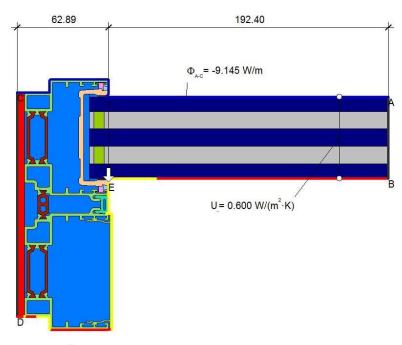


B.4 Détail haut coulissant


B.5 Détail bas fixe

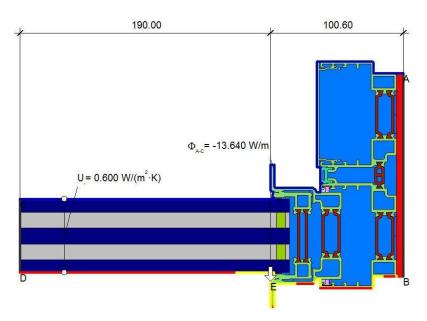



B.6 Détail bas coulissant

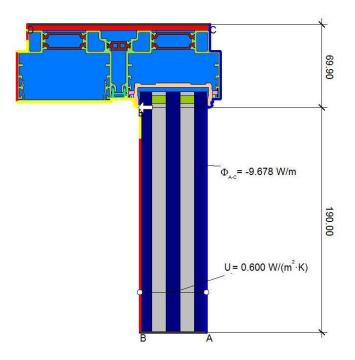

B.7 Détail partie centrale



Annexe C: Calcul des valeurs Ψ_{G}

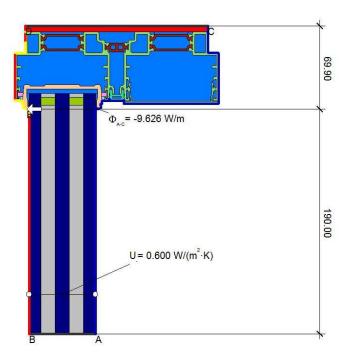

C.1 Détail côté fixe

$$\psi_{\text{\tiny A-E-C,-}} = \frac{\Phi}{\Delta T} - U_{_1} \cdot b_{_1} - U_{_2} \cdot b_{_2} = \frac{9.145}{30.000} - 0.600 \cdot 0.192 - 2.200 \cdot 0.063 = 0.051 \text{ W/(m·K)}$$


C.2 Détail côté coulissant

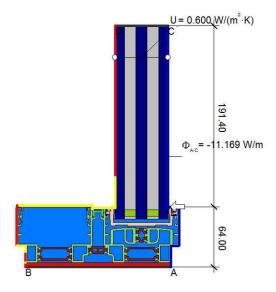
$$\psi_{\text{A-E-C-}} = \frac{\Phi}{\Delta T} - U_1 \cdot b_1 - U_2 \cdot b_2 = \frac{13.640}{30.000} - 2.920 \cdot 0.101 - 0.600 \cdot 0.190 = 0.047 \text{ W/(m·K)}$$

Material	$\lambda[W/(m\cdot K)]$	3	Randbedingung	$q[W/m^2]$	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aluminium (Si-Legierungen)	160.000	0.900	Aussen Standard		-10.000	0.040	
EPDM (Ethylen Propylen Dien Monomer)	0.250	0.900	Epsilon 0.9				0.90
FOREX	0.070	0.900	Innen Fensterrahmen Reduziert		20.000	0.200	
Floatglas	1.000	0.900	Innen Fensterrahmen Standard		20.000	0.130	
Gasfüllung(1)	0.016		Symmetrie/Bauteilschnitt	0.000			
Gasfüllung(2)	0.016						
Leicht belüftete Hohlräume	anisotrop						
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900					
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900					
Rein-Silicon	0.350	0.900					
TwoBox1	0.400	0.900					
TwoBox2 TGI Spacer M	0.310						
Unbelüftete Hohlräume	anisotrop						


C.3 Détail haut fixe

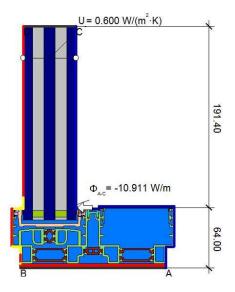
$$\psi_{\text{AEC.}^+} = \frac{\Phi}{\Delta T} - U_1 \cdot b_1 - U_2 \cdot b_2 = \frac{9.678}{30.000} - 0.600 \cdot 0.190 - 2.280 \cdot 0.070 = 0.049 \text{ W/(m·K)}$$

Material	$\lambda[W/(m\cdot K)]$	ε	Randbedingung	q[W/m ²]	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aluminium (Si-Legierungen)	160.000	0.900	Aussen Standard		-10.000	0.040	
EPDM (Ethylen Propylen Dien Monomer)	0.250	0.900	Epsilon 0.9				0.9
FOREX	0.070	0.900	Innen Fensterrahmen Reduziert		20.000	0.200	
Floatglas	1.000	0.900	Innen Fensterrahmen Standard		20.000	0.130	
GFK	0.300	0.900	Symmetrie/Bauteilschnitt	0.000			
Gasfüllung(1)	0.016						
Gasfüllung(2)	0.016						
Leicht belüftete Hohlräume	anisotrop						
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900					
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900					
Rein-Silicon	0.350	0.900					
TwoBox1	0.400	0.900					
TwoBox2 TGI Spacer M	0.310						
Unbelüftete Hohlräume	anisotrop						


C.4 Détail haut coulissant

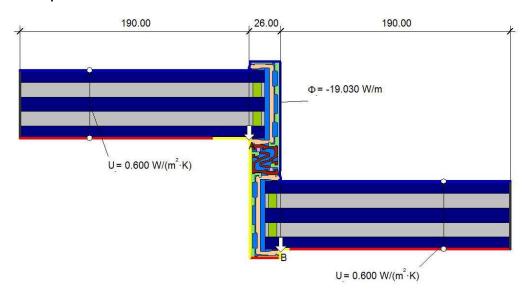
$$\psi_{\text{A-E-C-}} = \frac{\Phi}{\Delta T} - U_1 \cdot b_1 - U_2 \cdot b_2 = \frac{9.626}{30.000} - 0.600 \cdot 0.190 - 2.220 \cdot 0.070 = 0.052 \text{ W/(m·K)}$$

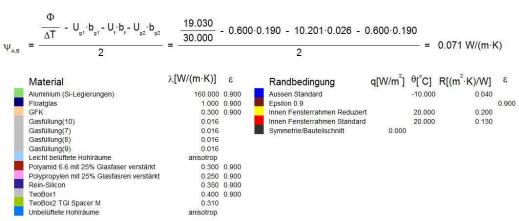
Material	$\lambda[W/(m \cdot K)]$	3	Randbedingung	q[W/m ²]	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	
Aluminium (Si-Legierungen)	160.000	0.900	Aussen Standard		-10.000	0.040	
EPDM (Ethylen Propylen Dien Monomer)	0.250	0.900	Epsilon 0.9				0
FOREX	0.070	0.900	Innen Fensterrahmen Reduziert		20.000	0.200	
Floatglas	1.000	0.900	Innen Fensterrahmen Standard		20.000	0.130	
GFK	0.300	0.900	Symmetrie/Bauteilschnitt	0.000			
Gasfüllung(7)	0.016						
Gasfüllung(8)	0.016						
Leicht belüftete Hohlräume	anisotrop						
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900					
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900					
Rein-Silicon	0.350	0.900					
TwoBox1	0.400	0.900					
TwoBox2 TGI Spacer M	0.310						
Unbelüftete Hohlräume	anisotrop						


C.5 Détail bas fixe

$$\psi_{\text{A-E-C}, \cdot} = \frac{\Phi}{\Delta T} - U_{_1} \cdot b_{_1} - U_{_2} \cdot b_{_2} = \frac{11.169}{30.000} - 3.210 \cdot 0.064 - 0.600 \cdot 0.191 = 0.052 \text{ W/(m·K)}$$

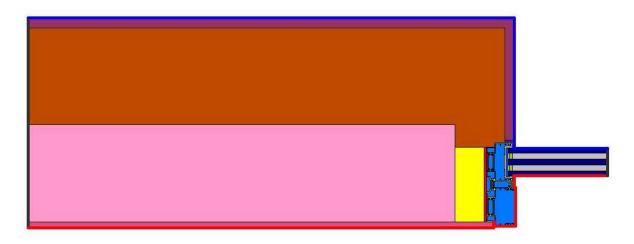
Material	$\lambda[W/(m\cdot K)]$	ε	Randbedingung	q[W/m ²]	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	
Aluminium (Si-Legierungen)	160.000	0.900	Aussen Standard		-10.000	0.040	,
EPDM (Ethylen Propylen Dien Monomer)	0.250	0.900	Epsilon 0.9				
FOREX	0.070	0.900	Innen Fensterrahmen Reduziert		20.000	0.200	,
Floatglas	1.000	0.900	Innen Fensterrahmen Standard		20.000	0.130	J
GFK	0.300	0.900	Symmetrie/Bauteilschnitt	0.000			
Gasfüllung(1)	0.016						
Gasfüllung(2)	0.016						
Leicht belüftete Hohlräume	anisotrop						
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900					
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900					
Rein-Silicon	0.350	0.900					
TwoBox1	0.400	0.900					
TwoBox2 TGI Spacer M	0.310						
Unbelüftete Hohlräume	anisotrop						


C.6 Détail bas coulissant

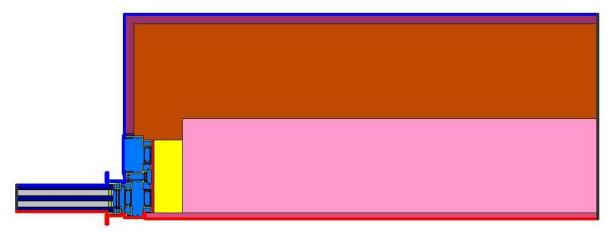


$$\psi_{\text{A=C.}} = \frac{\Phi}{\Delta T} - U_{_1} \cdot b_{_1} - U_{_2} \cdot b_{_2} = \frac{10.911}{30.000} - 3.070 \cdot 0.064 - 0.600 \cdot 0.191 = 0.052 \text{ W/(m·K)}$$

Material	$\lambda[W/(m\cdot K)]$	3	Randbedingung	$q[W/m^2]$	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	
Aluminium (Si-Legierungen)	160.000	0.900	Aussen Standard		-10.000	0.040	į
EPDM (Ethylen Propylen Dien Monomer)	0.250	0.900	Epsilon 0.9				0
FOREX	0.070	0.900	Innen Fensterrahmen Reduziert		20.000	0.200	j
Floatglas	1.000	0.900	Innen Fensterrahmen Standard		20.000	0.130	Ė
GFK	0.300	0.900	Symmetrie/Bauteilschnitt	0.000			
Gasfüllung(3)	0.016		20				
Gasfüllung(4)	0.016						
Leicht belüftete Hohlräume	anisotrop						
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900					
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900					
Rein-Silicon	0.350	0.900					
TwoBox1	0.400	0.900					
TwoBox2 TGI Spacer M	0.310						
Unbelüftete Hohlräume	anisotrop						

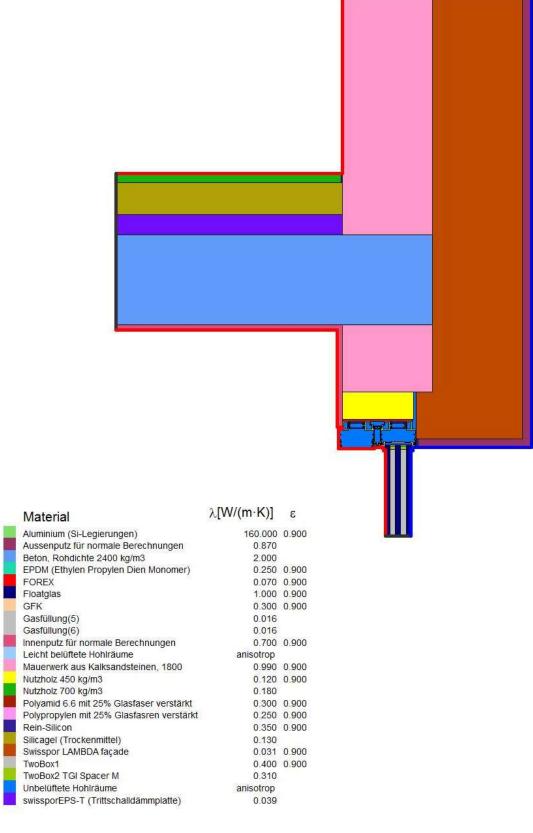

C.7 Détail partie centrale

Annexe D: CALCUL DES ISOTHERMES

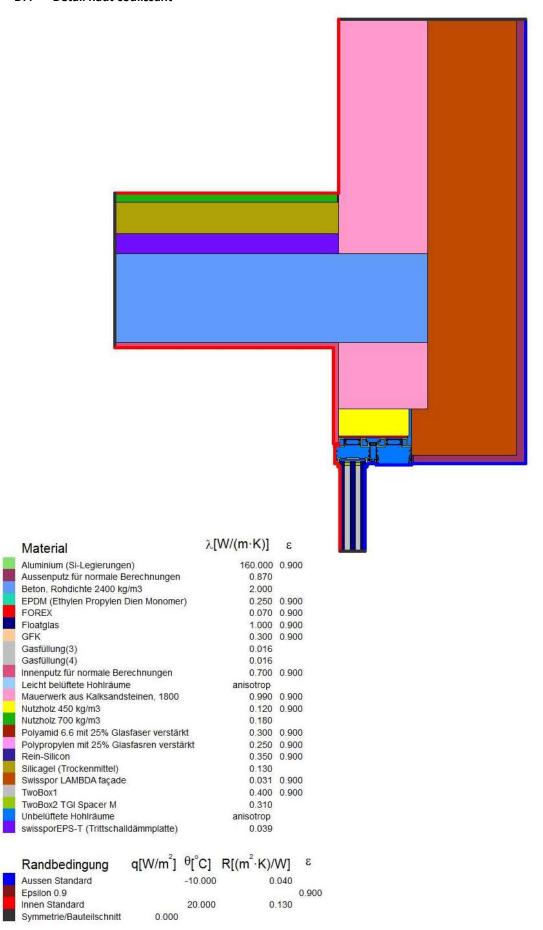

D.1 Détail côté fixe

Material	$\lambda[W/(m \cdot K)]$	3
Aluminium (Si-Legierungen)	160.000	0.900
Aussenputz für normale Berechnungen	0.870	
EPDM (Ethylen Propylen Dien Monomer)	0.250	0.900
FOREX	0.070	0.900
Floatglas	1.000	0.900
GFK	0.300	0.900
Gasfüllung(7)	0.016	
Gasfüllung(8)	0.016	
Innenputz für normale Berechnungen	0.700	
Leicht belüftete Hohlräume	anisotrop	
Mauerwerk aus Kalksandsteinen, 1800	0.990	
Nutzholz 450 kg/m3	0.120	
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900
Rein-Silicon	0.350	0.900
Swisspor LAMBDA façade	0.031	
TwoBox1	0.400	0.900
TwoBox2 TGI Spacer M	0.310	
Unbelüftete Hohlräume	anisotrop	

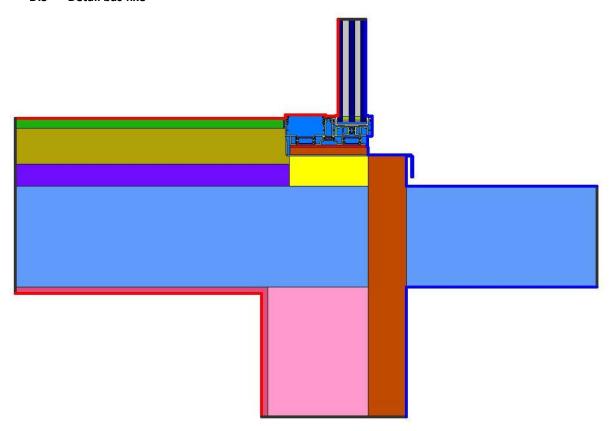
Randbedingung	$q[W/m^2]$	θ[°C]	$R[(m^2 \cdot K)/W]$	3
Aussen Standard		-10.000	0.040	
Epsilon 0.9				0.900
Innen Standard		20.000	0.130	
Symmetrie/Bauteilschnitt	0.000			


D.2 Détail côté coulissant

Ma	terial	$\lambda[W/(m\!\cdot\!K)]$	3
Alun	ninium (Si-Legierungen)	160.000	0.900
Auss	senputz für normale Berechnungen	0.870	
EPD	M (Ethylen Propylen Dien Monomer)	0.250	0.900
FOF	REX	0.070	0.900
Floa	tglas	1.000	0.900
Gas	füllung(5)	0.016	
Gas	füllung(6)	0.016	
Inne	nputz für normale Berechnungen	0.700	
Leic	ht belüftete Hohlräume	anisotrop	
Mau	erwerk aus Kalksandsteinen, 1800	0.990	
Nutz	holz 450 kg/m3	0.120	
Poly	amid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900
Poly	propylen mit 25% Glasfasren verstärkt	0.250	0.900
Rein	i-Silicon	0.350	0.900
Swis	spor LAMBDA façade	0.031	0.900
Two	Box1	0.400	0.900
Two	Box2 TGI Spacer M	0.310	
Unb	elüftete Hohlräume	anisotrop	

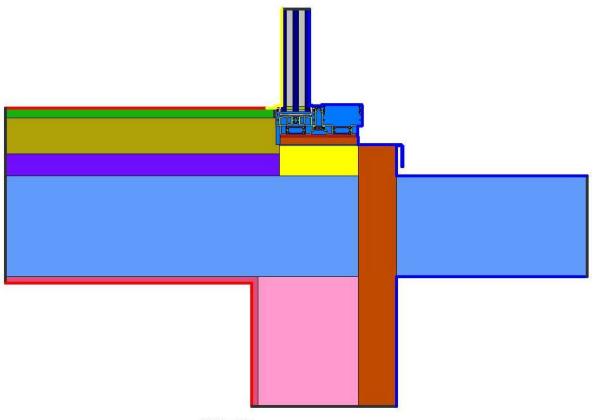

Randbedingung	q[W/m ²]	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aussen Standard		-10.000	0.040	
Epsilon 0.9				0.900
Innen Standard		20.000	0.130	
Symmetrie/Bauteilschnitt	0.000			

D.3 Détail haut fixe



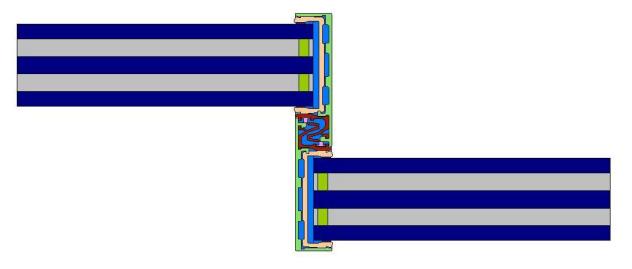
Randbedingung	$q[W/m^2]$	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aussen Standard		-10.000	0.040	
Epsilon 0.9				0.900
Innen Standard		20.000	0.130	
Symmetrie/Bauteilschnitt	0.000			

D.4 Détail haut coulissant



D.5 Détail bas fixe

Material	$\lambda[W/(m\cdot K)]$	3	Randbedingung	$q[W/m^2]$	θ[°C]	$R[(m^2 \cdot K)/W]$	3
Aluminium (Si-Legierungen)	160.000	0.900	Aussen Standard		-10.000	0.040	
Beton, Rohdichte 2400 kg/m3	2.000		Epsilon 0.9				0.9
EPDM (Ethylen Propylen Dien Monomer)	0.250	0.900	Innen Standard		20.000	0.130	
FOREX	0.070	0.900	Symmetrie/Bauteilschnitt	0.000			
Floatglas	1.000	0.900					
GFK	0.300	0.900					
Gasfüllung(7)	0.016						
Gasfüllung(8)	0.016						
Innenputz für normale Berechnungen	0.700						
Leicht belüftete Hohlräume	anisotrop						
Mauerwerk aus Kalksandsteinen, 1800	0.990						
Nutzholz 450 kg/m3	0.120						
Nutzholz 700 kg/m3	0.180						
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900					
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900					
Rein-Silicon	0.350	0.900					
Silicagel (Trockenmittel)	0.130	0.900					
Swisspor LAMBDA façade	0.031	0.900					
TwoBox1	0.400	0.900					
TwoBox2 TGI Spacer M	0.310						
Unbelüftete Hohlräume	anisotrop						
swissporEPS-T (Trittschalldämmplatte)	0.039						


D.6 Détail bas coulissant

Material	$\lambda[W/(m \cdot K)]$	3
Aluminium (Si-Legierungen)	160.000	0.900
Beton, Rohdichte 2400 kg/m3	2.000	
EPDM (Ethylen Propylen Dien Monomer)	0.250	0.900
FOREX	0.070	0.900
Floatglas	1.000	0.900
GFK	0.300	0.900
Gasfüllung(7)	0.016	
Gasfüllung(8)	0.016	
Innenputz für normale Berechnungen	0.700	
Leicht belüftete Hohlräume	anisotrop	
Mauerwerk aus Kalksandsteinen, 1800	0.990	
Nutzholz 450 kg/m3	0.120	
Nutzholz 700 kg/m3	0.180	
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900
Rein-Silicon	0.350	0.900
Silicagel (Trockenmittel)	0.130	0.900
Swisspor LAMBDA façade	0.031	0.900
TwoBox1	0.400	0.900
TwoBox2 TGI Spacer M	0.310	
Unbelüftete Hohlräume	anisotrop	
swissporEPS-T (Trittschalldämmplatte)	0.039	

Randbedingung	q[W/m ²]	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aussen Standard		-10.000	0.040	
Epsilon 0.9				0.900
Innen Fensterrahmen Reduziert		20.000	0.200	
Innen Fensterrahmen Standard		20.000	0.130	
Innen Standard		20.000	0.130	
Symmetrie/Bauteilschnitt	0.000			

D.7 Détail partie centrale

Material	$\lambda[W/(m \cdot K)]$	3
Aluminium (Si-Legierungen)	160.000	0.900
Floatglas	1.000	0.900
GFK	0.300	0.900
Gasfüllung(10)	0.016	
Gasfüllung(7)	0.016	
Gasfüllung(8)	0.016	
Gasfüllung(9)	0.016	
Leicht belüftete Hohlräume	anisotrop	
Polyamid 6.6 mit 25% Glasfaser verstärkt	0.300	0.900
Polypropylen mit 25% Glasfasren verstärkt	0.250	0.900
Rein-Silicon	0.350	0.900
TwoBox1	0.400	0.900
TwoBox2 TGI Spacer M	0.310	
Unbelüftete Hohlräume	anisotrop	

Randbedingung	$q[W/m^2]$	$\theta[^{\circ}C]$	$R[(m^2 \cdot K)/W]$	3
Aussen Standard		-10.000	0.040	
Epsilon 0.9				0.900
Innen Fensterrahmen Reduziert		20.000	0.200	
Innen Fensterrahmen Standard		20.000	0.130	
Symmetrie/Bauteilschnitt	0.000			